Benchmarking Deep Reinforcement Learning for Continuous Control

Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at this https URL in order to facilitate experimental reproducibility and to encourage adoption by other researchers. A0C: Alpha Zero in Continuous Action Space

A core novelty of Alpha Zero is the interleaving of tree search and deep learning, which has proven very successful in board games like Chess, Shogi and Go. These games have a discrete action space. However, many real-world reinforcement learning domains have continuous action spaces, for example in robotic control, navigation and self-driving cars. This paper presents the necessary theoretical extensions of Alpha Zero to deal with continuous action space. We also provide some preliminary experiments on the Pendulum swing-up task, empirically showing the feasibility of our approach. Thereby, this work provides a first step towards the application of iterated search and learning in domains with a continuous action space.