This is an old revision of the document! Bayesian Optimization with Gradients

In recent years, Bayesian optimization has proven successful for global optimization of expensive-to-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to decrease the number of objective function evaluations required for good performance. In particular, we develop a novel Bayesian optimization algorithm, the derivative-enabled knowledge-gradient (dKG), for which we show one-step Bayes-optimality, asymptotic consistency, and greater one-step value of information than is possible in the derivative-free setting. Our procedure accommodates noisy and incomplete derivative information, and comes in both sequential and batch forms. We show dKG provides state-of-the-art performance compared to a wide range of optimization procedures with and without gradients, on benchmarks including logistic regression, kernel learning, and k-nearest neighbors. Sobolev Training for Neural Networks

This paper introduces Sobolev Training for neural networks, which is a method for incorporating these target derivatives in addition the to target values while training. By optimising neural networks to not only approximate the function's outputs but also the function's derivatives we encode additional information about the target function within the parameters of the neural network. Thereby we can improve the quality of our predictors, as well as the data-efficiency and generalization capabilities of our learned function approximation. We provide theoretical justifications for such an approach as well as examples of empirical evidence on three distinct domains: regression on classical optimisation datasets, distilling policies of an agent playing Atari, and on large-scale applications of synthetic gradients. In all three domains the use of Sobolev Training, employing target derivatives in addition to target values, results in models with higher accuracy and stronger generalisation.